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Abstract
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1 Introduction

Balance tests are a common diagnostic tool in randomized controlled trials (RCTs), used to

assess whether treatment and control groups are comparable at baseline. In a review of all

RCTs published in top-five economics journals between 2021 and 2023 (69 papers in total),

we found that 90% reported results from balance tests (Table A.1).

Balance tests are especially important in RCTs where the randomization may not have

actually been implemented correctly—for example, in situations where the research team

lacks full control over the randomization process such as public lotteries (e.g. Hanna, Duflo,

and Greenstone 2016, Kerwin and Thornton 2021, Gazeaud, Mvukiyehe, and Sterck 2023,

Barker et al. 2024, Franklin et al. 2024). This is a particular concern when the implementers

of a program may have an incentive to manipulate the allocation process. Even in RCTs

in which the research team is in charge of randomization, balance tests may be useful to

demonstrate that randomization did not result in an unlucky draw, which can skew the

results of the study (Leamer 1983).1 Some scholars have argued in favor of re-randomizing if

balance tests identify serious imbalances (Bruhn and McKenzie 2009) although this can lead

to complications for inference (Athey and Imbens 2017). Balance tests also play an essential

role in the analysis of natural experiments, to demonstrate that compared groups are similar

before the quasi-random intervention or shock (as in e.g., Diamond, McQuade, and Qian

2019, Depetris-Chauvin, Durante, and Campante 2020, Jones et al. 2022, McGuirk, Hilger,

and Miller 2023, Bruhn et al. 2024).

Economists tend to use two methods to assess balance, often together. First, 82% of the

papers we reviewed use pairwise t-tests (or groupwise F -tests if there are more than two

study arms) with a series of baseline variables and argue that treatment and control groups

are balanced if few tests reject the null hypotheses at conventional thresholds. Normalized

differences are sometimes reported alongside t-tests to show that any differences are small in

size. Second, 32% of papers use omnibus tests of joint orthogonality, in which the treatment
1See Mutz, Pemantle, and Pham (2019) for arguments against this practice.
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dummy is regressed on the full list of baseline covariates, and conclude that experimental

groups are balanced if the test statistic is below a conventional significance threshold. Most

papers reporting the p-value of an omnibus F -test of joint orthogonality use an OLS regression

with robust standard errors to address heteroskedasticity in the linear probability model

(LPM), or cluster-robust standard errors to account for clustered randomization.

In this paper, we use simulations to show that both of these approaches have poor statis-

tical properties in term of size and power. Simple pairwise or groupwise t-tests and F -tests

for individual variables pose different statistical challenges. With pairwise or groupwise t-

tests, it is unclear how many rejections should lead to the conclusion that there is a balance

problem or a randomization failure. Authors are left to subjectively assess whether an exces-

sive number of tests have been rejected or whether one or more t-statistics are unreasonably

large. One approach that is sometimes used is “vote counting”, in which authors conclude

that there is imbalance if e.g. more than 10 percent of tests reject the null at the 10% level.

This approach is known to have low power in meta-analyses (Hedges and Olkin 1980). We

show that it also has incorrect size: it rejects the null at very high rates. This happens

because the fraction of p-values below 0.10 is itself a random variable. Even for independent

tests with the correct size it is centered at 10% under the null, and so is greater than 10%

nearly half the time.2

The omnibus tests of joint orthogonality typically deployed in the literature—which use

sampling-based inference—have the incorrect size, substantially over-rejecting the null hy-

pothesis. This problem is worst when many baseline variables are included in the test and

when heteroskedasticity-robust or cluster-robust standard errors are used. This over-rejection

of the null means that omnibus tests of joint orthogonality wrongly indicate imbalance issues

where none are present. The over-rejection problem is very large under realistic conditions.

For example, with 500 observations and 50 covariates that are independent and normally dis-

tributed, robust omnibus F -tests of joint orthogonality reject the null hypotheses at α = 0.10

2Asymptotically it exceeds 10% exactly half of the time. For datasets with finite samples, some fraction
have a rejection rate of exactly 10%.
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approximately 50% of the time, instead of the expected 10%.

We propose and compare three alternative methods to assess balance: (1) an omnibus F -

test of joint orthogonality with randomization inference p-values, (2) the minimum sharpened

q-value to adjust p-values from pairwise t-tests and thereby control the false discovery rate

(Benjamini, Krieger, and Yekutieli 2006; Anderson 2008), and (3) a Kolmogorov–Smirnov

test to assess whether p-values from pairwise t-tests are uniformly distributed. We compare

the performance of these methods in terms of statistical size and power using simulations. We

conclude that omnibus F -tests of joint orthogonality with randomization inference p-values

exhibit excellent performance in terms of both statistical power and size, for both individual

and cluster RCTs. Randomization inference is also the conceptually correct method for

calculating F -test p-values for balance tests in RCTs, as the uncertainty comes from the

randomization process and not from sampling variation (Abadie et al. 2020). In individually-

randomized designs, the minimum sharpened q-value from pairwise t-tests also performs

well, providing the best statistical power to detect few large imbalances (even though it is

conservative in terms of empirical size). The other approaches we test have problems with

size or statistical power, especially for clustered RCTs.

We therefore recommend assessing balance using omnibus F -tests of joint orthogonal-

ity with randomization inference as this method is more reliable and flexible with different

datasets, and it offers a more intuitive justification than alternative methods. This method

can be complemented with the minimum sharpened q-value from pairwise t-tests if treatment

is randomized at the individual level. We discuss how to implement these tests with multiple

treatments as well.

To illustrate the importance of these improved methods, we re-assess the balance of

two RCTs whose results were recently published in top-five journals (Garbiras-Díaz and

Montenegro 2022, Auriol et al. 2020). With pairwise t-tests and vote counting, 6% and 17%

of tests are rejected at the 10% level in Garbiras-Díaz and Montenegro (2022) and Auriol et al.

(2020) respectively, suggesting possible balance issues in the latter RCT. If we use typical
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omnibus F -tests of joint orthogonality with sampling-based inference, we reject the null of

overall balance for some treatments in both papers. However, we find no significant balance

issues in either paper when using an appropriate omnibus F -test of joint orthogonality with

randomization inference. These findings strengthen the internal validity of the two papers in

question. They also have broader implications for the RCT literature: while these two studies

were not selected randomly, they are representative of the issues that affect balance tests in

RCTs: 82% of recent randomized trials published in top five journals used pairwise t-tests or

groupwise F -tests and vote counting and 32% used omnibus tests of joint orthogonality, and

100% of omnibus tests relied on sampling-based inference.

This paper contributes to four strands of the literature in empirical research in social

science. First, it adds to existing work on the use of balance tests in randomized controlled

trials. Senn (1994) prominently argued that balance tests should not be used at all; based

on his work, using statistical tests to conclude that there are balance problems is commonly

referred to as the “Table 1 Fallacy”, particularly in health research (e.g. Sherry et al. 2023).

In social science, however, balance tests are more widely supported. Leamer (1983) points out

that unlucky draws in randomized trials can lead to exactly the same treatment assignments

as would happen outside of an experiment, leading to the same concerns about a particular

study’s results being incorrect. Unbiasedness guarantees that those errors will cancel out on

average, but offers no such promises about the results of any specific random assignment.

In a similar vein, Eckles (2021) argues that balance tests are important for verifying that

the randomization actually took place. Imperfect randomization and failure to comply with

treatment assignment are common in social science RCTs.3 Our results help to clarify how

to test for aggregate balance problems of the sort emphasized by Eckles. An individual t-test

or comparison of standardized differences is sufficient for seeing whether there is imbalance

on a specific variable, as in Leamer. To know whether the randomization protocol may have

been violated, however, overall balance tests are needed.
3For example, in the Perry Preschool program, some children were reassigned to different treatment

statuses (Heckman, Pinto, and Shaikh 2024).
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We extend this literature by comparing the performance of various tests for both individually-

randomized and clustered designs, considering a wide range of sample sizes and number of

covariates, and assess both the statistical size and power of the tests. We also build on work

that uses randomization inference for testing overall balance. Hansen and Bowers (2008)

develop an overall balance test and show that it performs well when p-values are constructed

using randomization inference. Their test is uncommon in economics. We show that the

sampling inference-based F -tests that most economics papers actually use over-reject the

null, but have the correct size and high power when randomization inference is used instead.

Second, our paper contributes to the literature on methods for the design and analysis

of randomized trials. Bruhn and McKenzie (2009) use simulations to show how to optimize

balance in the design of RCTs and how to analyze the data conditional on specific designs,

and Athey and Imbens (2017) provide an overall guide to the analysis of data from ran-

domized experiments. Abadie et al. (2020) discuss how to correctly conduct inference for

data-generating processes like RCTs where the uncertainty comes from the assignment pro-

cess rather than random sampling. A related line of work discusses the value of pre-specifying

one’s plan for analyzing the data from RCTs ahead of time (Casey, Glennerster, and Miguel

2012). We build on this body of work by providing specific guidance on how to conduct tests

for overall balance. Omnibus tests of joint orthogonality have been used in applied research

for some time, and are recommended by McKenzie (2015). But there is no existing evidence

on how to do inference on the F -statistics from this test. We show, in line with Abadie

et al., that the p-values for these omnibus F -tests of joint orthogonality should properly be

constructed using randomization inference.

Third, we contribute to an extensive body of research on the validity of empirical work

in economics. Brodeur et al. (2016) find that there is substantial “missing mass” in the

distribution of test statistics, suggesting that researchers are engaging in p-hacking in the

vein of Simmons, Nelson, and Simonsohn (2011). Eble, Boone, and Elbourne (2017) assess

randomized trials in economics by the standards used in medical research, showing that
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there is substantial risk of bias in the reporting of economics RCTs. Young (2019) shows that

statistical analyses of data from RCTs over-reject the null hypothesis due to the inappropriate

use of sampling- (rather than design-) based inference. A related line of work shows that

multiple testing problems mean that many RCT results are false positives (Anderson 2008).

In contrast with this previous work, we show that randomized experiments typically perform

better than the literature might suggest: sampling-based approaches to inference skew the

results toward (incorrectly) rejecting the null of balance. However, our findings also suggest

the possibility of another sort of selective reporting. Since the standard omnibus test of

joint orthogonality rejects the null so often, authors may be running it but not reporting

it, as observed by Snyder and Zhuo (2024). Our suggested alternative approach, which uses

randomization inference instead, can help head off this issue.

Finally, this paper complements the literature in econometrics on inference in models

where there are many covariates. Cattaneo, Jansson, and Newey (2018) show that in linear

regression models with heteroskedasticity, standard heteroskedasticity-robust standard errors

become inconsistent when the number of covariates grows at the same rate as the sample size.

Anatolyev (2012) and Anatolyev and Sølvsten (2023) show the poor asymptotic performance

of omnibus F -tests with numerous restrictions, both in homoskedastic and heteroskedastic

linear regression models. We build on this work by showing that the balance tests commonly

used in economics over-reject the null—often severely—when the number of restrictions is

large compared to the size of the sample. Our simulations show that this problem affects logits

and probits in addition to OLS, and that using HC3 standard errors does not correct the issue.

We also show that this problem arises in clustered RCTs, not just individually-randomized

experiments. Moreover, we illustrate how this issue can be corrected using randomization

inference. Our approach also extends to the analysis of balance in multi-treatment RCTs via

multinomial logits.
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2 Methods to assess test size and power

We use simulations with four different data generating processes (DGPs) to assess the size

and power of different omnibus tests of joint orthogonality.4 We conduct all our simulations

using Stata. Stata code for our simulations is available in the replication package for our

paper.

2.1 Test Size

In statistics, the size of a test refers to the probability of erroneously rejecting the null

hypothesis—in other words, the likelihood of committing a Type I error. Scholars distinguish

the nominal size of a test, which is the threshold set by the researcher for the maximum

allowable probability of a Type I error, from its empirical size, which is the actual observed

rate of Type I errors when the test is applied to a large number of datasets. Statisticians

typically try to construct tests for which the empirical size is equal to the nominal size. If the

empirical size of a test is less than its nominal size, the test is said to be more conservative,

meaning the actual rate of Type I errors is lower than the pre-specified level. This is not

problematic but may indicate that a more-powerful test is possible (Fisher and Robbins

2019). However, a statistical test should be avoided if its empirical size of a test is greater

than its nominal size, as this means there is an increased likelihood of Type I error, i.e. false

positives.

In balance tests, the null hypothesis is typically that the study arms have equal means. If

two groups differ only because of random chance,5 then a balance test will have correct size if

its p-values are uniformly distributed, rejecting the null hypothesis at the x percent level in x

percent of realizations. The test is conservative if p-values are skewed to the left, leading to
4As robustness checks, we also considered two additional DGPs: (1) a DGP in which we first sample

observations and then randomize them, and (2) a DGP with stratified randomization, where treatment
probabilities vary across strata. In both cases, our main results hold. For stratified designs, it is important to
control for strata fixed effects in the balance regressions, and to exclude the coefficients on these fixed effects
from the omnibus test of joint orthogonality—particularly when treatment probabilities differ by strata.

5For example, due to sampling variation or assignment variation, which implies that the means are equal
in expectation but different for any particular realizations of the sampling or randomization process.
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a reduced risk of Type I error. By contrast, the test size is problematic if p-values are skewed

to the right, leading to an over-rejection of the null hypothesis and increased likelihood of

Type I error.

We consider four DGPs to assess the size of balance tests. The first two DGPs use

simulated data. We consider a simple DGP with N observations, k independent variables

that are normally distributed ∼ N(0, 1),6 and an independent treatment that is randomly

assigned to half of the N observations (DGP 1). We also consider a more complex clustered

design, in which the N observations are split into C = 100 clusters of equal size, the k

variables are correlated within clusters (average intra-class correlation=0.2), and treatment

is randomly assigned to half of the clusters (DGP 2).7

In our benchmark estimates, we assess test size by generating 500 simulated datasets

with N = 500 observations and n = 50 covariates. To examine how test size varies with the

number of regressors and sample size, we also vary the number of observations N from 200

to 5000, and the number of variables k from 10 to 100 for DGP 1 and from 10 to 80 for DGP

2.8

The two other DGPs use original datasets from existing randomized controlled trials

but randomly (re-)assign the treatment variable using the same assignment rule as in the

original paper. We selected two papers from our review of recent RCTs published in top five

journals. These papers were selected intentionally, rather than at random, because we wanted

to explore key features of the DGP that were shown to be problematic in our simulations. We

selected one individually-randomized trial and one cluster-randomized trial, as the results of

our simulations show that balance tests perform differently in these two types of RCTs.

The individually-randomized trial we study is Garbiras-Díaz and Montenegro (2022),

which has a relatively small sample size and large number of covariates; our simulations
6As a robustness check, we also considered a DGP with variables that are distributed following uniform,

chi-squared, or binary distributions. Results suggest the distribution of variables has only minor impact on
test size.

7We also explore allowing C to vary with the sample size as a robustness check.
8For the clustered design, the number of variables needs to remain below the number of clusters in order

to retain enough degrees of freedom for the regressions to run.
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show that this combination exacerbates the spurious imbalance issues with traditional om-

nibus F -tests of joint orthogonality. Garbiras-Díaz and Montenegro (2022) evaluate whether

crowdsourced election monitoring via a Facebook ad campaign reduced electoral fraud during

Colombia’s 2019 mayoral elections. In 698 municipalities, citizens were randomized into four

groups: a placebo group received a basic election reminder; the “information” group received

a link to report irregularities; the “call-to-action” group received a motivational message to

report irregularities; and the “information + call-to-action” group received both. In our sim-

ulations, we reassign the 698 municipalities into a “placebo” treatment group and a control

group and use balance tests with 33 covariates to compare observations in both groups (DGP

3).

The cluster-randomized trial we analyze is Auriol et al. (2020) because one of the omnibus

F -test of joint orthogonality reported in the paper has a p-value below 0.1, and we suspected

that this was not a genuine imbalance problem but rather an issue with the test. In a lab-in-

the-field experiment in Ghana, Auriol et al. (2020) test whether religious donations serve as a

form of insurance, with believers giving in hopes of protection against future shocks. Clusters

of participants from a Pentecostal church were randomized into one of three treatment arms:

(i) the “Insurance” arm received a funeral insurance policy; (ii) the “Insurance Information”

arm received only information about the policy; and (iii) the “No Insurance” arm received

neither. All participants then played a dictator game to measure donations to the church

and other charities. In our simulations, we randomly reassign clusters into three groups and

use balance tests with 10 covariates to compare two of them (DGP 4).

We use the four DGPs to assess the size of balance tests. For each DGP and each balance

test, we generate 500 datasets and run the test separately in each dataset. We then estimate

the cumulative distribution of p-values, i.e. the proportion of p-values (out of 500) that

are below a threshold t, for t ranging from 0 to 1 in steps of 0.01. By construction, the

treatment indicators are independent from the baseline covariates. Therefore, the balance

tests have the correct size if p-values are uniformly distributed on [0,1], implying that the
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cumulative distribution of p-values is aligned with the 45 degree line. In contrast, balance

tests over-reject the null hypothesis if the distribution of p-values is skewed to the right and

the cumulative distribution of p-values is above the 45 degree line for p-values below critical

thresholds, and under-reject the null hypothesis if the opposite holds. When interpreting

the results of simulations, we will often consider DGPs 1 and 3 together, as they are both

individually-randomized designs, and DGPs 3 and 4 together, as they are both clustered

designs.

2.2 Statistical Power

The power of a test is the probability that the test correctly rejects the null hypothesis when

a specific alternative hypothesis is true. The power of a test is equal to 1− β where β is the

probability of committing a type II error by wrongly failing to reject the null hypothesis.

To assess the power of balance tests, we add imbalances to some of the covariates of

DGPs 1 and 2 and estimate how frequently the tests reject the null hypothesis that there

is no imbalance between the treatment and control groups. We use the significance level of

10%, which is the highest threshold typically reported in economics.

We consider four approaches to generate imbalances of different magnitudes in different

subsets of covariates. First, for one variable only, a very large imbalance is created by adding

0.25 to treated observations. Second, large imbalances in 10% of variables are created by

adding 0.2 to treated observations. Third, for 20% of variables, medium imbalances are

created by adding 0.15 to treated observations. Finally, small imbalances are created in 50%

of variables by adding 0.1 to treated observations.

We consider simulated datasets with different numbers of observations, letting N ranging

between 200 and 5,000. We estimate the proportion of p-values below 0.10. In our benchmark

estimates, we consider simulated datasets with 50 covariates. As a robustness check, we also

assess how statistical power changes when the number of covariates varies between 10 and

100 for DGP 1 and between 10 and 80 for DGP 2.
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When assessing statistical power, we focus on tests whose empirical sizes are equal or

below their nominal sizes. Indeed, assessing the power of a test is misleading if its empirical

size is above its nominal size, as a higher rate of rejecting the null hypothesis would likely

be caused by more type I errors instead of fewer type II errors. If two balance tests have

empirical size equal or below the nominal size, one should prefer the test with the highest

statistical power to detect imbalance. On the contrary, if two tests have similar statistical

power, one should prefer the test with the lowest empirical size, i.e. the lowest probability of

type I error.

3 Balance tests in economics

To gain insights into how researchers approach balance tests in the economics literature, we

systematically reviewed all papers that appeared when searching for the words “experiment”,

“field experiment”, “field-experiment” , “randomized controlled trial”, “randomized controlled

trials”, “randomised controlled trial”, and “random” in the search engine of each of the top

five journals in economics: the American Economic Review, Econometrica, the Journal of

Political Economy, the Review of Economic Studies, and the Quarterly Journal of Economics.

We also reviewed papers in the American Economic Journal: Applied Economics given the

journal’s focus on applied research and particularly RCTs. We identified 69 papers that were

published between 2021 and 2023 and report original results from a randomized controlled

trial. We analyzed these papers to identify whether and how the authors conducted balance

tests. Our findings are summarized in Table A.1.

We find that 90% of the reviewed papers use balance tests, which we define as tests

assessing the statistical significance or magnitude of the correlation between treatment status

and a vector of baseline covariates. Our review of the literature shows that economists employ

a variety of balance tests. Pairwise t-tests are reported in 65% of the papers, followed by

omnibus F -tests or chi-squared tests of joint orthogonality (32%), groupwise F -tests (26%),

11



and pairwise normalized differences (6.5%).9

We investigate the statistical properties of these tests by categorizing them into two

distinct groups based on whether they consider baseline covariates individually or jointly.

Pairwise and groupwise tests examine the association between treatment status and the dif-

ferent baseline covariates, each considered independently. By contrast, omnibus tests of joint

orthogonality consider the different baseline covariates jointly in a multivariate regression

framework. These two categories of tests yield distinct statistical insights and challenges.

3.1 Pairwise and groupwise tests

Pairwise t-tests are by far the most-frequently used method to test for balance. Pairwise t-

tests are testing the null hypothesis of equality of means in the treatment and control groups

for each baseline covariate considered separately. Pairwise t-tests can also be estimated

by regressing covariates on the treatment status. Regressions give authors the advantage

of controlling for fixed effects and clustering at the randomization level. When there are

more than two treatment arms, pairwise t-tests are sometimes replaced by groupwise F -

tests obtained by regressing each baseline covariate on the full vector of treatment indicators

and then testing the joint equality of the coefficient estimates with zero. Groupwise F -tests

should not be confused with omnibus tests of joint orthogonality, where instead the treatment

indicator is regressed on the full vector of baseline covariates; we discuss these in Section 3.2.

Pairwise t-tests and groupwise F -tests have the same underlying logic: for each variable,

they test whether the differences across arms are consistent with what one would expect from

random chance, under the null hypothesis. Among the 69 papers we reviewed, 82% report

the results of pairwise t-tests or similar groupwise F -tests.

To complement significance tests, authors sometimes also report pairwise normalized dif-

ferences (Imbens and Rubin 2015). This happens in 6.5% of papers. The normalized differ-

ence between study arms is the difference in means divided by the pooled standard deviation
9Omnibus F -tests can also be used for re-randomization, but since re-randomization procedures are not

commonly documented in detail we do not know how common this is.
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(
√
σ2
C + σ2

T ). This is normally compared against some cutoff value such as 0.15 or 0.25. Large

normalized differences suggest imbalances between study arms that are substantively large

compared with the sample variance, which implies that there could also be discrepancies

between the estimated treatment effects and the true parameter value. The value of this

approach is that it avoids failing to reject the null simply because of a small sample.

Pairwise and groupwise balance tests are problematic for three related reasons. First,

there is no clear rule for determining how many rejections of the null in a balance table

constitute a balance problem. Second, this ambiguity creates additional “researcher degrees

of freedom” (Simmons, Nelson, and Simonsohn 2011), allowing authors to frame balance

tables as problematic or not, depending on the authors’ preferences and audience pressures.

Researchers may downplay imbalance problems in order to ease publication. Conversely,

stakeholders with a vested interest in a program continuing may wish to sweep inconvenient

null results under the rug by claiming that the randomization had problems. Third, because

of the lack of guidance, researchers sometimes use ad hoc rules of thumb like “vote counting”,

in which the balance table indicates an overall balance problem if more than a specific fraction

of pairwise tests rejects the null (Hedges and Olkin 1980).

We examine the performance of pairwise t-tests and vote counting in Appendix Fig-

ure A.1. For 500 repetitions of DGPs 1 and 2 respectively, we calculate the proportion of

t-tests’ p-values that are below versus above 0.1, as economists doing vote counting typi-

cally use this threshold to conclude that the study arms are balanced.10 We find that vote

counting dramatically over-rejects the null hypothesis that treatment and control groups are

balanced. In 37% of the datasets generated using DGP 1, strictly more than 10% of t-tests

are significant at the 10% level when considering a heteroskedasticity-robust variance estima-

tor (the percentage is 34% with a variance estimator assuming homoskedasiticty). For DGP

2, 32% of datasets yield strictly more than 10% of t-tests that are significant at the 10% level

when considering a cluster-robust variance estimator (the percentage is as high as 64% with
10To implement each t-test, we use the Stata command regress, with the options robust or cluster

when relevant, and record the p-value of the regression coefficient.
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a variance estimator assuming homoskedasticity). These percentages are much higher than

10%, implying that vote counting—if applied strictly—would misleadingly lead researchers

to over-estimate imbalance problems.

3.2 Omnibus tests of joint orthogonality

Omnibus tests of joint orthogonality aim to address the limitations of pairwise and group-

wise tests by considering baseline covariates jointly in a unique test. Among the papers we

reviewed, 32% report the results of one or more omnibus tests of joint orthogonality. These

tests involve regressing the treatment dummy on the vector of baseline covariates and test the

null hypothesis that all regression coefficients are jointly equal to zero. Specifically, consider

the following linear regression:

Ti = α +
k∑

j=1

βjxi,j + εi (1)

where xi,j is a set of k baseline variables for observation i. An omnibus test of joint

orthogonality is a test of the null hypothesis that β1 = β2 = · · · = βk = 0, i.e. that the true

data-generating process has no treatment-control differences for any baseline variable. The

F -statistic for this test can be written out, in general, as

F =
1

k
· β̂

′ (
V̂ −1

)
β̂ (2)

where β is the vector of coefficient estimates β̂j and V̂ is the estimated variance-covariance

matrix of for the coefficient estimates. Equation 2 simplifies to F = SSR/k
SSE/(n−k−1)

under

homoskedastic standard errors, but also allows for alternative variance estimators; as we

discuss below, it is typical in the literature to use heteroskedasticity-robust or cluster-robust

standard errors.

Researchers face different options when implementing such tests in practice, including
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the choice of methods for estimating regression coefficients and standard errors. Among

papers employing an omnibus balance test, a large majority (86%) report the F -statistic and

associated p-value resulting from an Ordinary Least Squares (OLS) regression. A minority

of studies (14%) opted for a chi-squared test resulting from a logit or probit regression, or

their multinomial equivalent when there are more than two treatment arms.

Researchers also need to determine how to do inference on the test statistics to compute

p-values. Among the papers we reviewed, 100% rely on sampling-based inference (we study

randomization inference in Section 4.1). As the dependent variable in omnibus tests of

joint orthogonality is either binary or categorical, heteroskedasticity may be an issue when

OLS is used to estimate a linear probability model (LPM). Statistical software packages

usually provide several heteroskedasticity-consistent (HC) variance estimators, including the

HC1, HC2, and HC3 estimators (MacKinnon and White 1985). Researchers also use cluster-

robust variance estimators when treatment status is assigned at the cluster level. Among the

reviewed papers that use omnibus tests of joint orthogonality, 4.5% used heteroskedasticity-

robust estimators, 59% used cluster-robust estimators, and 27% used a variance estimator

that assumes homoskedasticity.

In Figure 1, we assess the size of omnibus F -tests and chi-squared tests of joint orthog-

onality using sampling-based inference.11 Our key finding is that all versions of the omnibus

tests of joint orthogonality have empirical size above nominal size, rejecting the null hypoth-

esis too frequently in some or all DGPs. When the DGP does not involve clustering (DGPs

1 and 3), correct test size is only obtained when the omnibus test is issued from an OLS

regression with a variance estimator that assumes homoskedasticity. All heteroskedasticity-

robust variance estimators dramatically over-reject the null hypothesis. For instance, under

DGP 1, an omnibus F -test of joint orthogonality resulting from an OLS regression with the

robust HC1 variance estimator rejects the null hypothesis in 50% of samples, instead of the

expected 10%. When a clustered design is considered (DGPs 2 and 4), all omnibus tests
11The results using a probit model are very similar to those from the logit and hence are only reported in

the Appendix (Figures A.5 and A.6).
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of joint orthogonality over-reject the null, even the one assuming homoskedasticity. The

problem remains if cluster-robust standard errors are used.

Why do heteroskedasticity-robust standard errors perform so poorly in the individually-

randomized designs? One possible explanation comes from Cattaneo, Jansson, and Newey

(2018), who study inference for linear regression models where there are large numbers of

covariates and heteroskedastic errors. They show that when k is large relative to N , the

usual asymptotics for HC1 and HC2 SEs do not hold, and that using them can lead to

over-rejection of the null. However, they show that HC3 SEs should perform well and, if

anything, under-reject the null, whereas we do not find that for omnibus F -tests. We also

find almost-identical problems for probits and logits, which are not linear models and do not

suffer from the heteroskedasticity problem that typifies LPMs.

In our setting, the error terms are not actually heteroskedastic under the null hypothesis.

Heteroskedastic errors are a general feature of LPMs, because extreme values of covariates

run up against the boundary of the support of the outcome, approaching 1 or 0 respectively.

However, in our simulations, the null hypothesis of zero treatment-control difference is true

and the probability of treatment conditional on X, so there is no heteroskedasticity problem

to address.12

We conduct formal tests of the null of homoskedasticity in DGP 1 (Appendix Figure A.2),

and found no evidence of heteroskedasticity in any of our simulations. Specifically, Breusch-

Pagan tests never reject the null of homoskedastic errors at the 0.05 level, and only 0.4% of

the time at the 0.10 level. This helps explain why the omnibus F-test assuming homoskedas-

ticity performs well with DGPs 1 and 3. We also find that our HC1 SEs are actually slightly

smaller on average than the HO SEs—the difference is just 0.2%, but it is statistically sig-

nificant at the 0.01 level. This is in line with Angrist and Pischke (2008, Ch. 8), who

show that, if there is no heteroskedasticity, then HC1 SEs are slightly downward-biased.

Despite this, the heteroskedasticity-robust F -statistics are meaningfully larger than those
12We thank Dean Eckles for pointing this out.
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that use homoskedastic SEs. Appendix Figure A.17 compares the empirical and theoretical

distributions of the various F -statistics across three scenarios, which differ in the number of

regressors (k = 10 or 50) and observations (N = 500 or 5000). In all three cases, the em-

pirical distribution of the F -statistic under homoskedasticity closely matches its theoretical

counterpart. In contrast, the empirical distributions of the F -statistics based on HC1, HC2,

and HC3 heteroskedasticity-consistent estimators deviate substantially from the theoretical

distribution when the number of regressors is large relative to the sample size.

Confirming this result, our simulations show that problems with heteroskedasticity-robust

and cluster-robust estimators are magnified when sample size is smaller and the number of

covariates is larger. Figures A.5 to A.7 in the Appendix represent the proportion of tests that

are rejected at the 10% level for different versions of omnibus tests of joint orthogonality,

as a function of the number of observations and covariates. By construction, 10% of tests

should reject the null if the test size is correct, as the treatment is randomly assigned and

hence independent of the baseline covariates in all four DGPs.

Under DGP 1, the size of omnibus F -tests of joint orthogonality assuming homoskedas-

ticity is correct even when N is small and the number of covariates is large (Appendix Figure

A.5). The size of the other omnibus tests is correct only when N is very large (≈ 5000) or

when the number of covariates is low (n < 10), but incorrect when the number of observa-

tions is small or moderate and the number of covariates is larger than 10. The HC2 and HC3

estimators perform no better, over-rejecting the null at comparable rates to HC1.

Under DGP 2 (the clustered design), test size problems emerge even for large datasets

and a relatively small number of covariates if the number of clusters is fixed—at 100 in

our simulations (Appendix Figure A.6). However, when we allow the number of clusters to

increase proportionally with the sample size (C = N/5), the size problem decreases as we

increase the sample size and—mechanically—the number of clusters (Appendix Figure A.7).

Taken together, our simulations show that issues emerge when k is large compared to N

in individually-randomized trials, and when k is large compared to the number of clusters in
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Figure 1
Size of Omnibus Tests of Joint Orthogonality Using Sampling-based Inference
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(a) DGP 1: 50 independent covariates ∼ N(0,1)
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(b) DGP 2: clustered design
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(c) DGP 3: Garbiras-Díaz and Montenegro (2022)
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(d) DGP 4: Auriol et al. (2020)
Notes: Cumulative distributions of p-values with 500 simulations per figure. DGPs 1 and 3 are individually-
randomized designs, while DGPs 2 and 4 are clustered designs. For each test, we estimate the proportion of
p-values that are below a threshold t, for t ∈ [0.01, 0.99] in steps of 0.01; curves show fractional polynomial
fits. Figures A.5 and A.6 show how test size varies with the number of covariates and observations for DGP
1 and DGP 2 respectively.
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clustered RCTs. Overall, we conclude that the methods currently used by economists to assess

covariate balance are generally inadequate. Pairwise and groupwise tests, while commonly

used, rely on subjective assessments of multiple test results by researchers, introducing a

degree of subjectivity and leaving room for interpretation. Although omnibus tests of joint

orthogonality address these issues, they usually over-reject the null, both for simulated data

and original data from existing RCTs.

4 Alternative methods

We examine three alternative approaches to assess balance: (1) omnibus tests of joint orthog-

onality with randomization inference, (2) sharpened q-values to adjust p-values from pairwise

t-tests and thereby control the false discovery rate (Benjamini, Krieger, and Yekutieli 2006;

Anderson 2008), and (3) a Kolmogorov–Smirnov test to assess whether p-values from pairwise

t-tests are uniformly distributed. We first describe the intuition for these three methods and

then examine their properties in terms of test size and statistical power.

4.1 Omnibus test of joint orthogonality with randomization infer-

ence

Omnibus tests of joint orthogonality can be used with randomization inference instead of

sampling-based inference, as proposed by Hansen and Bowers (2008). Randomization in-

ference involves comparing the observed test statistic with the theoretical distribution of

the test, which is computed by re-estimating the test statistic for a random sample of all

possible treatment assignment vectors.13 In this paper, we use 500 random reassignments

for each test. The intuition for using this approach is that the uncertainty in randomized

experiments comes not from sampling variation but from assignment variation—differences
13The exact theoretical distribution of the test can in theory be obtained by estimating the test statistic

for all possible treatment assignment vectors. However, this is computationally infeasible for all but the
smallest samples.
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across repetitions of the experiment in terms of which units are assigned to treatment versus

control (Abadie et al. 2020). Since the randomized “treatments” do nothing, the sharp null

hypothesis of a zero treatment effect for all observations is true by construction. We reject

this null hypothesis if the observed test statistic is at the extreme of the estimated theoretical

distribution—for example, beyond the 90th, 95th, or 99th percentile.14

Randomization inference aligns well with the intuition of balance tests, which examine

the uncertainty or variation resulting from the randomization process and not from sampling.

Another positive aspect of randomization inference is that it does not require specifying a

model of the error term, which typically depends on a set of unknown parameters. This makes

randomization inference more robust to non-normality and violations of homoskedasticity

(Young 2019).

Randomization inference tests for balance have the advantage of being very simple to

implement in Stata using the ritest package (Heß 2017).15 Below is example code for

implementing such a test:

*set the seed

set seed 3134

*define the list of balance variables here

local list_x x1 x2 x3 x4 x5

*for individually-randomized experiments

ritest T e(F), reps(500) : reg T ‘list_x’

14We need not consider the lower tail of the probability distribution because F -statistics are weakly positive
by construction.

15It is important to be cautious with missing values and if conditions when using the command ritest, as
it considers the entire dataset in memory during re-randomization—including observations excluded by the
if condition. To avoid potential issues, Simon Heß recommends specifying the estimation sample and the
observations excluded by the if condition as separate strata. You can then use ritest’s strata() option,
which ensures that treatment is re-randomized only within strata.
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*for cluster-randomized experiments

ritest T e(F), reps(500) cluster(cluster_id): \\\

reg T ‘list_x’ , cluster(cluster_id)

For stratified designs, strata fixed effects should be included in the balance regressions but

excluded from the omnibus F -test—particularly when treatment probabilities vary across

strata. This ensures that the test focuses on covariate balance within strata, rather than

detecting variation driven mechanically by the stratification structure. In Stata, this can

be implemented by combining the ritest command with reghdfe, which leverages the

Frisch–Waugh–Lovell theorem to “absorb” high-dimensional fixed effects (such as strata in-

dicators) without estimating their coefficients directly.

Our paper focuses on OLS regressions and the associated omnibus F -tests, as these are

more commonly used in economics. However, we note that chi-squared tests following logit

and probit regressions exhibit similar size and power, and can therefore be used interchange-

ably.

4.2 Adjustments for multiple hypothesis testing

Pairwise t-tests and groupwise F -tests are problematic because multiple tests are used to test

one hypothesis, which is that the treatment arms are balanced. This issue could in principle

be addressed using methods that adjust p-values to account for multiple hypothesis testing.

Two main approaches to address multiple hypothesis testing have been proposed in the

literature (Anderson 2008). A first group of corrections aim to control for the Familywise

Error Rate (FWER), which is the probability of making at least one type I error among all the

hypotheses being tested. The goal is to control this probability at a desired significance level.

The second group of corrections aim to control for the False Discovery Rate (FDR), which is

the expected proportion of false discoveries (type I errors) among the rejected hypotheses. If

all null hypotheses are true, then FWER and FDR are equivalent (Anderson 2008, p. 1487).
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This equivalence is important because for balance tests, the null hypotheses are generally

expected to be true.

Both FWER and FDR corrections can therefore be considered in the context of bal-

ance tests. In Appendix Figures A.3 and A.4, we compare Romano-Wolf stepdown p-values

(Romano and Wolf 2005; Clarke, Romano, and Wolf 2020), which control the FWER, and

sharpened q-values, which control the FDR (Anderson 2008). The figures show that both

categories of corrections have similar statistical size and power for individually-randomized

designs (DGPs 1 and 3) but only the FDR correction has an empirical test size below its

nominal size for clustered designs (DGPs 2 and 4), while the FWER correction substantially

over-rejects the null.

In what follows, we therefore focus on sharpened q-values, which control the FDR. Con-

trolling the FDR at level q implies imposing that the proportion of type I errors is below q.

The basic method for this approach, from Benjamini and Hochberg (1995), is the following.

Select a critical value for the test pcrit. Sort the p-values in increasing order and count them;

call the total number M . Each has a rank, r, from 1 (the smallest) to M (the largest). Then,

starting from the largest p-value, we test each one against pcrit × (r/M). So if there are 10

p-values then the largest is tested against 0.10, the second-largest against 0.09, and so forth.

We stop when we get to the first rejection and reject all tests with smaller p-values.

The approach we use augments this method in three ways. First, we “sharpen” qcrit to im-

prove statistical power while still controlling the FDR at the same rate, following Benjamini,

Krieger, and Yekutieli (2006). Second, we use Anderson (2008)’s approach to compute not

just whether a test was rejected at the qcrit level but the smallest qcrit for which the test would

be rejected, which can be interpreted in the same way as a standard p-value.16 Third, we use

the minimum of all the sharpened q-values as a test for overall balance. When we apply the

q-value procedure to the p-values of M pairwise t-tests, we obtain M test statistics. While
16One potential limitation of this approach is that it technically only works for independent tests (in

Anderson’s simulations it also works for positively dependent tests). Thus we may expect it to work better
in DGP 1, where the covariates are independent, as compared with the other DGPs that do have a non-zero
correlation structure.
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this helps determine which variables are imbalanced, it does not provide a unique determi-

nation of whether there is overall imbalance. We do this by rejecting the null hypothesis

that treatment arms are balanced if the minimum sharpened q-value is below a conventional

significance threshold (usually 0.1 in economics). This is equivalent to rejecting the null if

any q-value is less than the threshold.

4.3 Kolmogorov–Smirnov test

If a treatment is randomly assigned, then the p-values of pairwise t-tests should be uniformly

distributed. This can be tested using a Kolmogorov–Smirnov (K–S) test, which is a non-

parametric statistical test that can be used to compare a sample distribution with a known

reference distribution.

In the context of balance tests, the null hypothesis of the K-S test is that the sample of

p-values from pairwise t-tests comes from a uniform distribution. The K–S statistic quantifies

the maximum vertical distance between the empirical distribution of p-values and a uniform

distribution. A key limitation of the K–S test is that it has low statistical power, especially

for small sample sizes (Razali and Wah 2011).

4.4 Test Size

We assess the size of these alternative balance tests in Figure 2, considering the four DGPs

described in Section 2. For each method, we consider variance estimators assuming ho-

moskedasticity and either heteroskedasticity-robust or cluster-robust variance estimators,

depending on whether the treatment is allocated to individuals or clusters. We consider

individually-randomized designs (DGPs 1 and 3) and clustered designs (DGPs 2 and 4) sep-

arately.

For DGP 1, all of the tests we consider have an empirical size equal to or below the nominal

size.17 For DGP 3 however, only the omnibus F -tests with randomization inference and the
17The randomization inference curve closely follows the 45-degree line for p-values below 0.2, then rises
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minimum q-values from pairwise t-tests with a variance estimator assuming homoskedasticity

have an empirical test size at or below the nominal size. We compare their statistical power

in the next section. By contrast, minimum q-values with a HC1 variance estimator and

both versions of the Kolmogorov–Smirnov test have incorrect sizes, over-rejecting the null

hypothesis of balance.

In DGPs that mimic a clustered RCT (DGPs 2 and 4), empirical size is equal to or

below the nominal size only for the omnibus F -tests with randomization-based inference and

minimum q-values from pairwise t-tests with cluster-robust variance estimators. We compare

the statistical power of these tests in the next section. By contrast, minimum q-values with a

variance estimator assuming homoskedasticity and both versions of the Kolmogorov–Smirnov

tests tend to over-reject the null hypothesis.

These results are confirmed when varying both the sample size and the number of co-

variates (Appendix Tables A.8 and A.9). In all DGPs, minimum q-values appear to be

conservative for high significance thresholds, indicating the tests tend to generate fewer type

I errors than expected. This is not an issue per se, but it may indicate that a more powerful

test could be designed (Fisher and Robbins 2019).

slightly above it. This deviation results from the particular random seed used in all our simulations. Sim-
ulations with alternative seeds or additional repetitions confirm that randomization inference yields correct
test size.
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Figure 2
Size of Omnibus Tests of Joint Orthogonality Using Randomization Inference,

Kolmogorov–Smirnov Tests, and Minimum q-values
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(a) DGP 1: 50 independent covariates ∼N(0,1)
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(b) DGP 2: clustered design
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(c) DGP 3: Garbiras-Díaz and Montenegro (2022)
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(d) DGP 4: Auriol et al. (2020)
Notes: Cumulative distributions of p-values with 500 simulations per figure. DGPs 1 and 3 are individually-
randomized designs, while DGPs 2 and 4 are clustered designs. For each test, we estimate the proportion of
p-values that are below a threshold t, for t ∈ [0.01, 0.99] in steps of 0.01; curves show fractional polynomial
fits. Figures A.8 and A.9 show how test size varies with the number of covariates and observations for DGP
1 and DGP 2 respectively.
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4.5 Statistical Power

We assess the power of the balance tests in Figure 3 for DGP 1 and Figure 4 for DGP 2.

We focus on balance tests that have correct sizes to avoid cluttering figures with misleading

information.

For DGP 1, which assumes normally distributed variables and no clustering, we find

that minimum q-values offer the best statistical power when only one variable is imbalanced,

while the power of omnibus F -tests of joint orthogonality with randomization inference is

intermediate.18 Omnibus F -tests of joint orthogonality with randomization inference have

higher power than minimum q-values when a larger number of imbalances, each of which

is smaller in magnitude, are considered. This suggests that the two approaches might be

complementary in individually-randomized RCTs. We obtain similar results when we vary

the sample size and the number of covariates (Appendix Figure A.10).

With DGP 2, we find that omnibus F -tests of joint orthogonality using randomization

inference and cluster-robust standard errors have the highest power, while minimum q-values

from pairwise t-tests with cluster-robust variance estimators largely fail to detect imbalance.

The results are similar when we vary the sample size and the number of covariates (Appendix

Figure A.11). For clustered RCTs, we conclude that omnibus F -tests of joint orthogonality

with randomization inference are a valid tool to assess balance, achieving the correct test size

and higher statistical power than other approaches.

18We do not show the results of Kolmogorov-Smirnov tests and minimum q-values with a HC1 variance
estimator as these approaches have incorrect size in DGP 3. Figure A.10 shows that the statistical power of
minimum q-values with a HC1 variance estimator is similar to that of the minimum q-values with a variance
estimator assuming homoskedasticity. The statistical power of Kolmogorov-Smirnov tests is low.
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Figure 3
Power of Omnibus Tests of Joint Orthogonality for DGP 1 Using

Randomization Inference, Kolmogorov–Smirnov Tests, and Minimum q-values
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(a) 1 imbalanced variable, 0.25 SD
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Notes: Power curves for DGP 1 with k = 50 and N ∈ {200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000}. For each value of N , 100 simulated
datasets are created and we compute the share of p-values or minimum q-values below 0.10; curves show fractional-polynomial fits. In Panel (a), one
variable is made imbalanced by adding 0.25 to treated observations. In Panel (b), 10% of variables are made imbalanced by adding 0.2 to treated
observations. In Panel (c), 20% of variables are made imbalanced by adding 0.15 to treated observations. In Panel (d), 50% of variables are imbalanced,
by adding 0.1 to treated observations. Results for minimum q-values using HC1 SEs and K–S tests are hidden as these tests have the incorrect size
(see Figure 2). Figure A.10 shows how the power of the tests varies with the number of covariates and observations.
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Figure 4
Power of Omnibus Tests of Joint Orthogonality for DGP 2

Using Randomization Inference, Kolmogorov–Smirnov Tests, and Minimum q-values
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Notes: Power curves for DGP 1 with k = 50 and N ∈ {200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000}. For each value of N , 100 simulated
datasets are created and we compute the share of p-values or minimum q-values below 0.10; curves show fractional-polynomial fits. In Panel (a), one
variable is made imbalanced by adding 0.25 to treated observations. In Panel (b), 10% of variables are made imbalanced by adding 0.2 to treated
observations. In Panel (c), 20% of variables are made imbalanced by adding 0.15 to treated observations. In Panel (d), 50% of variables are imbalanced,
by adding 0.1 to treated observations. Results for minimum q-values using HO SEs and K–S tests are hidden as these tests have the incorrect size
(see Figure 2). Figure A.11 shows how the power of the tests varies with the number of covariates and observations.
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5 Multiple treatments and cross-randomization

Many randomized experiments involve more than one treatment, and thus more than two

study arms. Out of the 69 RCTs that we identified in our literature review, 27 (39%)

have more than one treatment. For these studies, we can examine balance between each

treatment and the control group. That is the best course of action if we are concerned about

the Leamer (1983) problem of unlucky random assignments. In that case, omnibus F -tests

of joint orthogonality using randomization inference are the optimal approach.

For assessing the Heckman, Pinto, and Shaikh (2024) problem of violations of the ran-

domization protocol, however, it is necessary to look for problems with overall balance. This

means that we need to run combined omnibus tests of joint orthogonality across all study

arms. Linear regression cannot handle this, but it is possible to implement a comparable

test using multivariate analysis of variance and covariance (MANOVA) or multinomial logit

with sampling-based or randomization inference. The minimum q-value approach and other

multiple-hypotheses adjustments can also be easily adapted by considering the p-values from

pairwise t-tests for each baseline covariate and each possible comparison between treatment

arms. We consider individually-randomized designs (DGPs 1 and 3) and clustered designs

(DGPs 2 and 4) separately. For DGPs 1 and 2, we consider four treatment arms with one

quarter of observations randomly assigned to each. For DGPs 3 and 4, we consider four and

three treatment arms, respectively, as in the original papers.

For the individually-randomized designs in DGPs 1 and 3, we show in Figure A.12 that all

approaches have their empirical size equal or below the nominal size, except the multinomial

logit with sampling-based inference, which over-rejects the null hypothesis.19 We therefore

omit this approach in power tests. Of the four remaining tests, the minimum q-value has the

best statistical power to detect one large imbalance, while MANOVA and the multinomial

logit with randomization inference have higher statistical power to detect multiple small
19The multinomial logit can fail to converge when the number of observations is low compared to the

number of covariates (Figure A.15).
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imbalances.

For DGPs 2 and 4, which are clustered designs, only MANOVA and multinomial logit

with randomization inference have the correct test size, while minimum q-values are again

conservative, under-rejecting the null (Figure A.12). We focus on these approaches in power

tests and find that multinomial logit with randomization inference is, by far, the approach

that has the best statistical power to detect single large or multiple small imbalances. We

therefore recommend using this approach for clustered designs with multiple treatments. It

is important to bear in mind, however, that this test is not high-powered: large sample sizes

are needed to detect imbalances.

The Stata code to run this test parallels the code for F -tests above, but using the mlogit

command instead of reg:

*for individiually-randomized experiments

ritest study_arm e(chi2), reps(500): mlogit study_arm ‘list_x’

*for cluster-randomized experiments

ritest study_arm e(chi2), reps(500) cluster(cluster_id): \\\

mlogit study_arm ‘list_x’ , cluster(cluster_id)

6 Revisiting existing papers

In this section, we reassess the balance of two RCTs whose results were recently published

in top-five journals.

6.1 Garbiras et al. (2022)

To assess balance, Garbiras-Díaz and Montenegro (2022) report the results of pairwise t-

tests, considering 33 baseline covariates (e.g. statistics on past reporting of irregularities,
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socioeconomic covariates, political covariates, and region dummies). They use “vote counting”

to conclude that municipalities are well balanced across treatment arms, reporting that “Only

16 differences in means out of 264 comparisons in Table A2 are statistically significant at

a 10 percent level or less.” The authors do not report the results of omnibus tests of joint

orthogonality.

In Table 1, we report the results of the different tests of joint orthogonality discussed in our

paper. With sampling-based inference and a heteroskedasticity-robust variance estimator, we

find that two out of five tests are statistically significant at the 10% level. Two other p-values

are just above 0.1, which could raise concerns. However, these results may be misleading:

Section 3.2 concluded that such omnibus F -tests tend to over-reject the null hypothesis

that groups have equal means. Indeed, if we use the randomization inference procedure

that performs best in our simulations, we find that the p-values of omnibus F -tests of joint

orthogonality are all well above 0.1. These results are consistent with our conclusion that

these tests have correct test size when treatment is assigned at the individual level. We reach

the same conclusion using minimum q-values.20

We also find that the control and treatment arms are well balanced when considering the

multiple treatment arms together using MANOVA with sampling-based inference (p-value

= 0.41), MANOVA with randomization inference (p-value = 0.41), multinomial logit with

randomization inference (p-value = 0.48), and the minimum sharpened q-value from pairwise

t-tests (minimum q-value = 1).

20All p-values of Kolmogorov-Smirnov tests are also above 0.1. However, we refrain from interpreting these
results given the poor size and statistical power of this test.
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Table 1
Replication of Existing Papers

F -test p-value Min. K–S
Inference = SI SI RI q-value p-value

HC1/Cluster H0 HC1/Cluster HC1/Cluster HC1/Cluster

(1) (2) (3) (4) (5)
Panel A: Replication of Garbiras-Díaz and Montenegro (2022)

Any treatment vs. Control 0.088 0.287 0.278 1.000 0.737
Information vs. Control 0.155 0.366 0.562 0.413 0.595
Call to actions vs. Control 0.065 0.417 0.446 1.000 0.643
Info+call to action vs. Control 0.126 0.404 0.528 1.000 0.105
Any letter vs. No letter 0.428 0.631 0.664 1.000 0.349

Panel B: Replication of Auriol et al. (2020)
Insurance vs. all other arms 0.988 0.967 0.996 1.000 0.005
Insurance info vs. all other arms 0.079 0.070 0.202 0.868 0.891
No insurance vs. all other arms 0.068 0.055 0.186 1.000 0.811

Notes: This table presents the results of different balance tests using the datasets from Garbiras-Díaz and Montenegro (2022) and Auriol et al. (2020).
We rely on the same set of baseline covariates and present the same sets of comparisons as used by the authors in their original papers. For Auriol
et al. (2020), we present the additional comparison “No insurance vs. all other arms”.
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6.2 Auriol et al. (2020)

Auriol et al. (2020) present a table of balance tests with twelve preregistered covariates in

Table II of their paper.21 They consider both pairwise t-tests and omnibus F -tests of joint

orthogonality.22 Out of the 24 p-values from pairwise t-tests, 4 are statistically significant at

the 10% threshold (17%). A researcher using simple “vote counting” would conclude that the

study arms are imbalanced. This is an example of the over-rejection problem we documented

in Section 3.1. Moreover, their table also reports two p-values of omnibus F -tests of joint

orthogonality—0.97 and 0.07—one of which is statistically significant at the 10% level.

In Table 1, we present the results of different omnibus tests of joint orthogonality. With

sampling-based inference, two out of three omnibus F -tests of joint orthogonality are signif-

icant at the 10% level, both with a cluster-robust variance estimator and with a variance

estimator assuming homoskedasiticty. Researchers using these tests may wrongly conclude

that the RCT has a problem of imbalance. However, when we instead use randomization

inference, all p-values are above 0.1. We obtain a similar conclusion with minimum q-values.

Overall, these additional tests suggest there is no balance issue in the Auriol et al. (2020)

RCT, contrary to the conclusions of conventional sampling-based inference.23

We also conclude that the control and treatment arms are well balanced when considering

the multiple treatment arms together using multinomial logit with randomization inference

(p-value = 0.28).
21The covariates are age, gender, total monthly income, a dummy of the employment status, three indicator

variables reflecting ethnic group membership (Akan, Ewe, or Ga), and indicators for daily church attendance,
praying multiple times per day, attending the revival week, and being recruited in the second wave.

22Pairwise t-tests are estimated for the twelve baseline covariates and two types of comparison: the “In-
surance” treatment arm versus the “Insurance Information” treatment arm, and the “Information insurance”
treatment arm versus the “No Insurance” treatment arm. For the two omnibus F -tests of joint orthogonality,
the authors consider slightly different comparison groups, as the “Insurance” treatment arm is compared to
the two other groups together in the first F -test, and the “Insurance Information” treatment arm is compared
to the two other groups together in the second test. The F -tests are also estimated using a reduced list of
baseline covariates, dropping the dummy variables identifying revival weeks and the second wave. We are
able to exactly replicate the balance test results presented by the authors for both the pairwise t-tests and
omnibus F -tests of joint orthogonality. In our analysis, we consider the same comparisons and variables as
the authors used in their F -tests of joint orthogonality.

23We refrain from interpreting the results of Kolmogorov–Smirnov tests, which were shown to have poor
test size and statistical power in Section 4.
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7 Conclusion

Balance tests play a vital role in randomized experiments, especially when researchers lack

full control over the randomization procedure. They allow researchers to verify whether

randomization was implemented correctly and whether chance imbalances might undermine

inference. They are even more important for natural experiments, where external factors fully

determine treatment assignment. When used properly, balance tests can provide reassurance

that treatment and control groups are comparable on observables—a key requirement for the

internal validity of both RCTs and natural experiments.

However, the implementation of balance tests in economics often falls short. The most

commonly used methods—pairwise t-tests combined with vote counting, or omnibus F -tests

with sampling-based inference—tend to over-reject the null hypothesis of balance, especially

when many covariates are included or sample sizes are modest. This can lead to incorrect

conclusions about randomization failure even when treatment was truly assigned at random.

As a result, researchers may avoid reporting balance test results that falsely suggest problems

(Snyder and Zhuo 2024), or may even decide not to analyze or publish experimental findings

at all due to misplaced concerns about the validity of the randomization (Miguel 2021; Franco,

Malhotra, and Simonovits 2014).

We show that omnibus balance tests based on randomization inference perform sub-

stantially better than the conventional approaches that rely on sampling-based inference.

Omnibus F -tests suffer from inflated Type I error rates, particularly when the number of

covariates is large relative to the sample size, leading to frequent false rejections of the null

of balance. In contrast, randomization inference yields tests with correct size and strong

statistical power across for both individually- and cluster-randomized trials. Furthermore,

the logic of randomization inference is better aligned with the purpose of balance tests: to

assess whether observed differences across study arms could plausibly arise under the random-

ization procedure actually used, rather than under assumptions about asymptotic sampling

distributions. This makes randomization inference not only statistically preferable, but also
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conceptually appropriate for evaluating the success of random assignment.

Future work on balance tests should explore how these tests should best be used in

practice. For example, what would happen if researchers abandoned all RCTs in which

(correctly implemented) omnibus balance tests show an overall balance problem? And in

particular, how does that vary with the true rate of randomization failures, and the bias

caused by imperfect compliance with randomization protocols? If the null hypothesis holds,

and all RCTs were in fact correctly run, then throwing out studies with imbalanced treatment

allocations could cause treatment effect estimates to be biased on average. But if some

experiments really are run incorrectly then throwing them out would reduce bias. Which

pattern dominates is an empirical question, and one that should be informed by both careful

simulations and engagement with the practitioners who actually implement these experiments

in the field.
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Online Appendix

Figure A.1
Vote-Counting: Fraction of Pairwise t-tests with p-values Below 0.10

(a) Pairwise t-tests, OLS with HC1 variance esti-
mator (DGP 1)

(b) Pairwise t-tests, OLS with HO variance estima-
tor (DGP 1)

(c) Pairwise t-tests, OLS with clustered SEs (DGP
2)

(d) Pairwise t-tests, OLS with HO variance estima-
tor (DGP 2)

Notes: Each figure is based on 500 simulated datasets and shows the cumulative distribution of the share of
p-values from pairwise t-test that are statistically significant at the 10% threshold. DGP 1 considers a data
generating process with 500 observations, 50 independent variables that are normally distributed ∼N(0,1),
and an independent treatment randomly assigned to half of observations. DGP 2 considers a data generating
process with 500 observations split in 100 clusters of equal size, 50 variables that are normally distributed
and correlated within clusters (average coefficient of intra-cluster correlation = 0.2), and an independent
treatment randomly assigned to half of the clusters. For each DGP, 500 datasets are generated, and for each
dataset, we estimate the p-values of the 50 pairwise t-tests and calculate the share of p-values that are below
0.1. The four figures shows the distribution of these shares for DGPs 1 and 2 and for heteroskedasticity-robust
and cluster-robust variance estimators as well as for a variance estimator assuming homoskedasticity.
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Figure A.2
Breusch-Pagan Heteroskedasticity Test for DGP 1
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Notes: The graph shows 500 simulated datasets based on DGP 1 with 500 observations and 50 independent
variables that are normally distributed N∼(0,1), and an independent treatment randomly assigned to half of
observations. Each point represents the intersection of the p-value from a F-test of joint orthogonality using
HO standard errors and the p-value of from a Breusch-Pagan test of heteroskedasticity for one dataset.
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Figure A.3
Size of Balance Tests Using FWER and FDR Multiple-Hypothesis Testing Adjustments
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(a) DGP 1: 50 independent covariates ∼N(0,1)
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(b) DGP 2: Clustered design
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(c) DGP 3: Garbiras-Díaz and Montenegro (2022)
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(d) DGP 4: Auriol et al. (2020)
Notes: Cumulative distributions of minimum p- and q-values with 500 simulations per figure. DGPs 1 and 3
are individually-randomized designs, while DGPs 2 and 4 are clustered designs. For each test, we estimate
the share of test statistics (out of 500) that are below a threshold t, for t ranging from 0.01 to 0.99 in steps
of 0.01; curves show fractional polynomial fits.
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Figure A.4
Power of Balance Tests Using FWER and FDR Multiple-Hypothesis Testing Adjustments for DGP 1
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(a) 1 imbalanced variable, 0.25 SD
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(b) 10% imbalanced variables, 0.20 SD
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(c) 20% imbalanced variables, 0.15 SD
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Notes: Power curves for DGP 1 with k = 50 and N ∈ {200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000}. For each value of N , 100 simulated
datasets are created and we compute the share of p-values or minimum q-values below 0.10; curves show fractional-polynomial fits. In Panel (a), one
variable is made imbalanced by adding 0.25 to treated observations. In Panel (b), 10% of variables are made imbalanced by adding 0.2 to treated
observations. In Panel (c), 20% of variables are made imbalanced by adding 0.15 to treated observations. In Panel (d), 50% of variables are imbalanced,
by adding 0.1 to treated observations.
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Figure A.5
Size of Omnibus Tests of Joint Orthogonality for DGP 1 Using Sampling-based Inference
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(a) F -test, OLS with HC1 variance estimator
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(b) F -test, OLS with HC2 variance estimator
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(c) F -test, OLS with HC3 variance estimator
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(d) F -test, OLS with HO variance estimator
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(e) Chi2-test, Logit with HO variance estimator
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(f) Chi2-test, Probit with HO variance estimator

Notes: Size curves for DGP 1 with k ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and N ∈
{200, 500, 1000, 2000, 5000}. For each combination of k and N , 500 simulated datasets are created and
we compute the share of p-values below 0.10; curves show fractional-polynomial fits.
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Figure A.6
Size of Omnibus Tests of Joint Orthogonality for DGP 2 Using Sampling-based Inference

(Holding # of Clusters Fixed, C = 100)
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(d) F -test, Probit

Notes: Size curves for DGP 2 with k ∈ {10, 20, 30, 40, 50, 60, 70, 80}, N ∈ {200, 500, 1000, 2000, 5000}, and
100 clusters. For each combination of k and N , 500 simulated datasets are created and we compute the share
of p-values below 0.10; curves show fractional-polynomial fits.
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Figure A.7
Size of Omnibus Tests of Joint Orthogonality for DGP 2 Using Sampling-based Inference

(Varying # of Clusters with Sample Size, C = N/5)

0.0

0.2

0.4

0.6

0.8

1.0

0.020.040.060.080.0100.0
N # of variables

N=200 N=500 N=1000 N=2000 N=5000

Size (Share of Rejections)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 20.0 40.0 60.0 80.0
k (# of variables)

Size (Share of Rejections)

(a) F -test, OLS with clustered SEs

0.0

0.2

0.4

0.6

0.8

1.0

0.0 20.0 40.0 60.0 80.0
k (# of variables)

Size (Share of Rejections)

(b) F -test, OLS with HO variance estimator

0.0

0.2

0.4

0.6

0.8

1.0

0.0 20.0 40.0 60.0 80.0
k (# of variables)

Size (Share of Rejections)

(c) F -test, Logit

0.0

0.2

0.4

0.6

0.8

1.0

0.0 20.0 40.0 60.0 80.0
k (# of variables)

Size (Share of Rejections)
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Notes: Size curves for DGP 2 with k ∈ {10, 20, 30, 40, 50, 60, 70, 80}, N ∈ {200, 500, 1000, 2000, 5000}, and
N/5 clusters. For each combination of k and N , 500 simulated datasets are created and we compute the share
of p-values below 0.10; curves show fractional-polynomial fits. Regressions with N = 200 and cluster-robust
estimators cannot be estimated due to an insufficient number of clusters.

52



Figure A.8
Size of Omnibus Tests of Joint Orthogonality for DGP 1 Using Randomization Inference,

Kolmogorov–Smirnov Tests, and Minimum q-values
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(e) Kolmogorov–Smirnov test, HO variance estima-
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(f) Kolmogorov–Smirnov test, HC1 variance estima-
tor

Notes: Size curves for DGP 1 with k ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and N ∈
{200, 500, 1000, 2000, 5000}. For each combination of k and N , 500 simulated datasets are created and
we compute the share of p-values or minimum q-values below 0.10; curves show fractional-polynomial fits.
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Figure A.9
Size of Omnibus Tests of Joint Orthogonality for DGP 2 Using Randomization Inference,

Kolmogorov–Smirnov Tests, and Minimum q-values
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Notes: Size curves for DGP 2 with k ∈ {10, 20, 30, 40, 50, 60, 70, 80} and N ∈ {200, 500, 1000, 2000, 5000}.
For each combination of k and N , 500 simulated datasets are created and we compute the share of p-values
or minimum q-values below 0.10; curves show fractional-polynomial fits.
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Figure A.10
Power of Omnibus Tests of Joint Orthogonality for DGP 1 Using Randomization inference,

Kolmogorov–Smirnov Tests, and Minimum q-values
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Notes: Power curves for DGP 1 with k ∈ {10, 25, 50, 100} and N ∈
{200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000}. For each method and combination of k
and N , 100 simulated datasets are created and we compute the share of p-values or minimum q-values below
0.10; curves show fractional-polynomial fits. In Panels (a-c), one variable is made imbalanced by adding
0.25 to treated observations. In Panels (d-f), 10% of variables are made imbalanced by adding 0.2 to treated
observations. In Panels (g-i), 20% of variables are made imbalanced by adding 0.15 to treated observations.
In Panels (j-l) 50% of variables are imbalanced, by adding 0.1 to treated observations.
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Figure A.11
Power of Omnibus Tests of Joint Orthogonality for DGP 2 Using Randomization Inference,

Kolmogorov–Smirnov Tests, and Minimum q-values
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(d) RI, 10% imbal. (0.20 SD)
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(f) K–S, 10% imbal. (0.20 SD)
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(g) RI, 20% imbal. (0.15 SD)
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(j) RI, 50% imbal. (0.10 SD)
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(k) q-val., 50% imbal. (0.10 SD)
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(l) K–S, 50% imbal. (0.10 SD)
Note: Power curves for DGP 2 with k ∈ 10, 25, 50, 80 and N ∈
{200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000}. For each value of N , 100 simulated
datasets are created and we compute the share of p-values or minimum q-values below 0.10; curves show
fractional-polynomial fits. In Panels (a-c), one variable is made imbalanced by adding 0.25 to treated
observations. In Panels (d-f), 10% of variables are made imbalanced by adding 0.2 to treated observations.
In Panels (g-i), 20% of variables are made imbalanced by adding 0.15 to treated observations. In Panels (j-l)
50% of variables are imbalanced, by adding 0.1 to treated observations.
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Figure A.12
Size of Omnibus Tests of Joint Orthogonality with Multiple Treatment Arms
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(a) DGP 1: 50 independent covariates ∼ N(0,1)
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(b) DGP 2: clustered design
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(c) DGP 3: data from Garbiras-Díaz and Montene-
gro (2022)
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(d) DGP 4: data from Auriol et al. (2020)

Notes: Cumulative distributions of p-values with 500 simulations per figure. DGPs 1 and 3 are individually-
randomized designs, while DGPs 2 and 4 are clustered designs. Observations are randomly assigned to four
treatment arms for DGPs 1, 2, and 3, and three treatment arms for DGP 4. For each test, we estimate the
proportion of p-values or minimum q-values (out of 500) that are below a threshold t, for t ranging from 0.01
to 0.99 in steps of 0.01; curves show fractional polynomial fits. Figures A.15 and A.16 show how test size
vary with the number of covariates and observations for DGP 1 and DGP 2 respectively.
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Figure A.13
Power of Omnibus Tests of Joint Orthogonality for DGP 1, with Multiple Treatment Arms
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(a) 1 imbalanced variable, 0.25 SD
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(b) 10% imbalanced variables, 0.20 SD
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(c) 20% imbalanced variables, 0.15 SD
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(d) 50% imbalanced variables, 0.10 SD
Notes: Power curves for DGP 1 with k = 50 and N ∈
{200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000}. For each value of N , 100 simulated
datasets are created and we compute the share of p-values or minimum q-values below 0.10; curves show
fractional-polynomial fits. In Panel (a), one variable is made imbalanced by adding 0.25 to treated
observations. In Panel (b), 10% of variables are made imbalanced by adding 0.2 to treated observations.
In Panel (c), 20% of variables are made imbalanced by adding 0.15 to treated observations. In Panel (d),
50% of variables are imbalanced, by adding 0.1 to treated observations. Results from multinomial logit with
sampling-based inference are hidden as this approach has incorrect test size (see Figure A.12).

58



Figure A.14
Power of Omnibus Tests of Joint Orthogonality for DGP 2, with Multiple Treatment Arms
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(a) 1 imbalanced variable, 0.25 SD
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(b) 10% imbalanced variables, 0.20 SD
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(c) 20% imbalanced variables, 0.15 SD
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(d) 50% imbalanced variables, 0.10 SD
Notes: Power curves for DGP 2 with k = 20 and N ∈
{200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000}. Clusters are randomly assigned to four
treatment arms, with one quarter of observations in each. For each value of N , 100 simulated datasets
are created and we compute the share of p-values or minimum q-values below 0.10; curves show fractional-
polynomial fits. In Panel (a), one variable is made imbalanced by adding 0.25 to treated observations. In
Panel (b), 10% of variables are made imbalanced by adding 0.2 to treated observations. In Panel (c), 20%
of variables are made imbalanced by adding 0.15 to treated observations. In Panel (d), 50% of variables
are imbalanced, by adding 0.1 to treated observations. Results from MANOVA and multinomial logit with
sampling-based inference are hidden as these approaches have incorrect test size (see Figure A.12).
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Figure A.15
Size of Omnibus Tests of Joint Orthogonality for DGP 1 with Multiple Treatment Arms, as

a Function of Sample Size
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Notes: Size curves for DGP 1 with k ∈ {10, 20, 30, 40, 50, 60, 70, 80, 90, 100} and N ∈
{200, 500, 1000, 2000, 5000} and treatments randomly assigned to four study arms with one quarter of the
sample in each arm. For each combination of k and N , 500 simulated datasets are created and we compute
the share of p-values or minimum q-values below 0.10; curves show fractional-polynomial fits. The multino-
mial logit did not converge for N=200.
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Figure A.16
Size of Omnibus Tests of Joint Orthogonality for DGP 2 with Multiple Treatment Arms, as

a Function of Sample Size
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Notes: Size curves for DGP 2 with k ∈ {5, 10, 15, 20} and N ∈ {200, 500, 1000, 2000, 5000}. Clusters are
randomly assigned to four study arms, with one quarter of the clusters in each. For each combination of k
and N , 500 simulated datasets are created and we compute the share of p-values or minimum q-values below
0.10; curves show fractional-polynomial fits.
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Figure A.17
Empirical and Theoretical Distribution of F-statistics for DGP 1
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Notes: The figures show the empirical and theoretical distribution of F-statistics for DGP 1, varying the
number of observations N and number of variables k.
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Table A.1
Literature Review of RCTs (2021–2023)

General Info. Pairwise/Groupwise test Joint Orthogonality F -test

Reference Bal. N k T+C Design t F Nor. Diff. Inf. J.F. Model Inf. VE
De Janvry et al. (2023) Yes 2,854 11 2 Clu Yes No No SBI Yes OLS SBI CRVE
Ainsworth et al. (2023) Yes 2,629 12 2 Clu Yes No No SBI Yes OLS SBI CRVE
Guryan et al. (2023) Yes Exp. 1: 2,633 19 2 Ind Yes No No SBI Yes OLS SBI CRVE

Exp. 2: 2,710 - - -
Macchi (2023) Yes Exp 1: 511 25 2 Ind Yes No No SBI&RI No - - -

Exp. 2: 238 - - -
Buchmann et al. (2023) Yes 26,408 18 3 Clu Yes No No SBI Yes OLS SBI CRVE
Brock and De Haas (2023) Yes 2,054 6 3 Ind No No No SBI Yes OLS SBI HO
Hardy and McCasland (2023) Yes 755 20 2 Ind Yes No No SBI Yes OLS SBI HO
Baseler (2023) Yes 497 20 2 Ind Yes No No SBI No - - -
Zárate (2023) Yes 6,147 23 3 Clu Yes No No SBI Yes ML SBI CRVE
Oh (2023) Yes 630 14 2 Ind Yes No No SBI No - - -
Chakravorty, Dar, and Emerick (2023) Yes 400 19 2 Clu No Yes No SBI No - - -
Afrouzi et al. (2023) No - - -
Alan, Corekcioglu, and Sutter (2023) Yes 1,988 19 2 Clu Yes No No SBI No - - -
Cullen, Dobbie, and Hoffman (2023) Yes 1,095 17 6 Ind No Yes No SBI No - - -
Gray-Lobe, Pathak, and Walters (2023) Yes 4,125 14 2 Ind Yes No No SBI No - - -
Banerjee et al. (2023b) Yes 7,511 42 2 Clu Yes No No SBI No - - -
Battaglia, Gulesci, and Madestam (2023) Yes 2,717 31 2 Clu Yes No Yes SBI&RI No - - -
Alesina, Miano, and Stantcheva (2023) Yes 22,506 8 3 Ind No No No SBI No - - -
Jack et al. (2023) Yes 1,840 26 6 Clu No Yes No SBI No - - -
Christensen and Timmins (2023) Yes 18,045 3 2 Clu No Yes No SBI No - - -
Beaman et al. (2023) Yes 6,807 9 3 Clu Yes No No SBI Yes OLS SBI CRVE
Tungodden and Willén (2023) No - - - - - - - - - - - -

Notes: Bal. refers to whether any balance tests were conducted in the paper. N is the number of observations and k is the number of covariates used
to test balance. T+C is the total number of study arms in the paper. Design is the randomization method used: Clu means cluster-randomization
while Ind means individual randomization. The t column indicates that the paper shows pairwise t-tests, the F column indicates that it shows
imnibus F -tests, and the Nor. Diff. column indicates that it shows normalized differences. Inf. is the inference method used: SBI is sampling-based
inference, and RI is randomization inference. J.F. indicates whether the paper shows omnibus F -tests of joint orthogonality. In the model column,
OLS means ordinary least-squares regression and ML means multinomial logit. VE shows the variance estimator used to estimate standard errors:
HO is the conventional homoskedastic SE estimator; HC1 is Eicker-Huber-White heteroskedasticity-robust SEs, and CRVE is the Cluster-Robust
Variance Estimator.
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General Info. Pairwise/Groupwise test Joint Orthogonality F -test

Reference Bal. N k T+C Design t F Nor. Diff. Inf. J.F. Model Inf. VE
Muralidharan, Niehaus, and Sukhtankar (2023) No - - - - - - - - - - -
Adhvaryu, Kala, and Nyshadham (2023) Yes 1,866 9 4 Clu Yes No No SBI No - - -
Cortés et al. (2023) No - - - - - - - - - - - -
Muralidharan, Niehaus, and Sukhtankar (2023) No - - - - - - - - - - - -
Banerjee et al. (2023a) Yes 1,082 9 4 Clu Yes No No SBI No - - -
Bellemare et al. (2023) Yes 2,021 15 4 Ind Yes No No SBI No - - -
Dhar, Jain, and Jayachandran (2022) Yes 14,809 15 2 Clu Yes No Yes SBI Yes OLS SBI CRVE
Garbiras-Díaz and Montenegro (2022) Yes 698 33 7 Ind Yes No No SBI& RI No - - -
Aydin (2022) Yes 45,307 5 2 Ind No No No SBI Yes OLS SBI CRVE
Hussam et al. (2022b) Yes 754 27 3 Ind Yes No No No Yes OLS SBI CRVE
Casaburi and Reed (2022) Yes 1,079 12 2 Clu Yes No No SBI No - - -
Wheeler et al. (2022) Yes 1,638 11 2 Clu No Yes Yes SBI No - - -
Chen, Persson, and Polyakova (2022) Yes 743 17 2 Ind Yes No No SBI No - - -
Hussam et al. (2022a) Yes 2,887 32 8 Clu No Yes No SBI No - - -
Lopez, Sautmann, and Schaner (2022) Yes 2,055 27 3 Clu No Yes No SBI No - - -
Stephens Jr and Toohey (2022) Yes 12,562 11 2 Ind Yes No No No No - - -
Angrist, Autor, and Pallais (2022) Yes 8,190 15 2 Ind Yes Yes No SBI No - - -
Meghir et al. (2022) No - - - - - - - - - - - -
Allcott et al. (2022) Yes 1,177 14 2 Ind Yes Yes No SBI Yes OLS SBI HO
Carrera et al. (2022) Yes 1,248 8 2 Ind Yes No No SBI No - - -
Byrne, Martin, and Nah (2022) No - - - - - - - - - - - -
Cai and Wang (2022) Yes 1,251 15 2 Clu Yes No No SBI No - - -
Arteaga et al. (2022) Yes 2,050 5 3 Ind No Yes No SBI No - - -
Carlana, La Ferrara, and Pinotti (2022) Yes 1,217 7 2 Clu Yes No Yes SBI No - - -
Fehr, Fink, and Jack (2022) Yes 5,842 10 2 Ind Yes Yes No SBI No - - -
Cullen and Perez-Truglia (2022) Yes 2,060 7 4 Clu Yes No No SBI No - - -

Notes: Bal. refers to whether any balance tests were conducted in the paper. N is the number of observations and k is the number of covariates used
to test balance. T+C is the total number of study arms in the paper. Design is the randomization method used: Clu means cluster-randomization
while Ind means individual randomization. The t column indicates that the paper shows pairwise t-tests, the F column indicates that it shows
imnibus F -tests, and the Nor. Diff. column indicates that it shows normalized differences. Inf. is the inference method used: SBI is sampling-based
inference, and RI is randomization inference. J.F. indicates whether the paper shows omnibus F -tests of joint orthogonality. In the model column,
OLS means ordinary least-squares regression and ML means multinomial logit. VE shows the variance estimator used to estimate standard errors:
HO is the conventional homoskedastic SE estimator; HC1 is Eicker-Huber-White heteroskedasticity-robust SEs, and CRVE is the Cluster-Robust
Variance Estimator.
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General Info. Pairwise/Groupwise test Joint Orthogonality F -test

Reference Bal. N k T+C Design t F Nor. Diff. Inf. J.F. Model Inf. VE
Levy (2021) Yes 37,494 21 3 Ind No No No SBI Yes OLS SBI -
Lowe (2021) Yes 800 11 2 Clu Yes No No SBI No - - -
Brune, Chyn, and Kerwin (2021) Yes 870 15 2 Ind Yes No No SBI Yes OLS SBI HC1
Leaver et al. (2021) Yes 242 4 2 Ind Yes No Yes RI No - - -
McKenzie and Puerto (2021) Yes 3,537 14 3 Clu Yes No No SBI Yes OLS SBI CRVE
Mohanan et al. (2021) Yes 135 8 3 Clu No Yes No SBI No - - -
Muralidharan et al. (2021) Yes 548 33 2 Clu Yes Yes No SBI Yes OLS SBI CRVE
Angrist, Caldwell, and Hall (2021) Yes 1,031 11 3 Ind Yes No No SBI Yes ML SBI CRVE
Carter, Laajaj, and Yang (2021) Yes 514 4 2 Ind No Yes No SBI No - - -
Dal Bó et al. (2021) Yes 176 8 2 Clu Yes No No SBI No - - -
Bessone et al. (2021) Yes 452 19 6 Ind Yes No No SBI Yes OLS SBI HO
Dahl, Kotsadam, and Rooth (2021) Yes 781 9 2 Clu No No No No Yes OLS SBI HO
Dube et al. (2021) Yes 504 17 3 Clu Yes No No No Yes ML SBI CRVE
Abebe et al. (2021) Yes 3,049 33 3 Clu Yes Yes No SBI Yes OLS SBI -
Angelucci and Bennett (2021) Yes 303 24 2 Clu Yes No No SBI Yes OLS SBI HO
Fowlie et al. (2021) Yes 71,017 5 5 Clu Yes No No SBI No - - -
Doerr and Necker (2021) Yes 2,543 1 7 Clu No Yes No SBI No - - -
Bandiera et al. (2021) Yes 587 24 4 Clu Yes Yes No SBI&RI No - - -
Alan et al. (2021) Yes 7,487 36 2 Clu Yes No No SBI No - - -
Bergman (2021) Yes 306 12 2 Ind Yes No No SBI No - - -
Beaman et al. (2021) Yes 14,300 12 4 Clu No Yes No SBI No - - -

Notes: Bal. refers to whether any balance tests were conducted in the paper. N is the number of observations and k is the number of covariates used
to test balance. T+C is the total number of study arms in the paper. Design is the randomization method used: Clu means cluster-randomization
while Ind means individual randomization. The t column indicates that the paper shows pairwise t-tests, the F column indicates that it shows
omnibus F -tests, and the Nor. Diff. column indicates that it shows normalized differences. Inf. is the inference method used: SBI is sampling-based
inference, and RI is randomization inference. J.F. indicates whether the paper shows omnibus F -tests of joint orthogonality. In the model column,
OLS means ordinary least-squares regression and ML means multinomial logit. VE shows the variance estimator used to estimate standard errors:
HO is the conventional homoskedastic SE estimator; HC1 is Eicker-Huber-White heteroskedasticity-robust SEs, and CRVE is the Cluster-Robust
Variance Estimator.
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